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Abstract 

A Fatou’s lemma for the Gel’fand integrable correspondences (multifunctions) 
will be proved. The result will be applied to analysis of a large exchange 

economy on the commodity space .∞A  We define the economy as a measurable 
map from a measure space to the space of consumers’ characteristics following 
Aumann [2, 4], and prove the existence of competitive equilibria. 

1. Introduction 

The classical Fatou’s lemma for real valued functions have been 
extended to mappings with values of finite dimensional vectors by 
Aumann [3]; Hildenbrand [13]; and Schmeidler [25]. These studies were 
closely related with the research of a market model with a measure space 
of consumers. 
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Aumann [2] defined an economy by a map ,2: XXA ×→  which 
assigns each consumer Aa ∈  its preference and a map ,: XA →ω  
which assigns a its initial endowment, where X is the non-negative 

orthant of the commodity space ,AR  which is identified as a consumption 
set and ( )ν,, AA  is an atomless measure space. Every element Aa ∈  is 

interpreted as a “name” of a consumer, and each value of the map 
( )( )aa ω,  is the characteristics of the consumer a (the individual form of 

the economy). The main result of the paper showed that the set of core 
allocations coincides with the set of allocations, which are supported as 
competitive equilibria (core equivalence theorem). Hildenbrand [13] 
established that the economy is defined by a measurable map 

( ) ( )( ),,,: aaaA a ω=Ω×→ EPE 6  where P  is the set of preferences 

and Ω  is the set of endowment vectors. Aumann [4] made the 
remarkable observation that for demonstrating the existence of the 
competitive equilibrium ( )( ),, aξp  where p is the equilibrium price vector 

and ( )aξ  is the consumption vector of the consumer ,Aa ∈  one does not 

have to assume the convexity on the preferences. This is a mathematical 
consequence of the Liapounoff theorem, which asserts that the range of a 
finite dimensional vector measure is convex. (See Diestel and Uhl [11], 
Chapter IX for details.) 

A standard strategy for the proof of the existence of equilibria is that 
one truncates the consumption set by the cubes of the length 

,,2,1 …=k  defining { }.kXXk ≤ξ∈ξ=  Then it is easy to show that 

the truncated sub-economy kE  obtained by replacing X with kX  has the 

equilibrium ( ( )) .,2,1,, …=ξ kakkp  Since we can normalize the price 

vectors 1=kp  for all k, we have pp →k  for some .AR∈p  The Fatou’s 

lemma in A -dimension, ( ( ) ) ( ( )) νν daLsdaLs kAkA ξ∫⊂ξ∫  (Fact 12 in 

Section 2), works here, and one obtains an integrable map ( )aξ  with 

( ) ( ( ))aLsa kξ∈ξ  a.e. in A, where Ls means the limit set (see the next 

section). We can show that ( )( )aξ,p  is a competitive equilibrium for .E  
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The economy with infinite time horizon, or more generally speaking, with 
infinitely many commodities was formulated by Bewley [6] in which the 

commodity space was defined by the space { ( ) },sup 1 +∞<ξξ=ξ= ≥
∞ t

t
tA  

the space of the bounded sequences with the supremum norm. We will 
see in the next section that on this commodity space, the space of all 

summable sequences, { ( ) <== ∑∞
=

t
t

t pp 1
1 pA  },+∞  is a natural 

candidate of the price space. The value of a commodity ( ) ∞∈ξ=ξ At  

evaluated by a price vector ( ) 1A∈= tpp  is then given by the natural 

“inner product” .1
tt

t p ξ=ξ ∑∞
=

p  Bewley [6] established the existence of 

competitive equilibria for economies with finite number of consumers on 
this commodity space. Thereafter, this commodity space has been applied 
to theories of intertemporal resource allocations and capital accumulation 
by Bewley [7]; Yano [32]; Suzuki [26] among others; see also Suzuki [27]. 

The above results of Aumann and Bewley have been tried to be 
unified by several authors. For example, Bewley [8] and Noguchi [20] 
proved the equilibrium existence theorems for the economies with the 
measure space of consumers on the commodity space .∞A  Khan and 
Yannelis [17] and Noguchi [19] proved the existence of a competitive 
equilibrium for the economies with the measure space of agents in which 
the commodity space is a separable Banach space, whose positive orthant 
has a norm interior point. Bewley worked with an exchange economy, 
and Noguchi [19, 20] proved his theorems for an economy with continua 
of consumers and producers1. 

                                                      
1 On the other hand, Suzuki [28, 29] proved the existence and the core equivalence of 
competitive equilibria for an economy with a continuum of consumers, which is slightly 
different from those of the above literatures. He defined the economy as a probability 
measure µ  on the set of agents’ characteristics Ω×P  (the coalitional form or the 
distribution form). Then the competitive equilibrium of this economy is also defined as a 

price vector 1A∈p  and a probability measure ν  on .Ω×× PX  These definitions of the 
economy and the competitive equilibrium on it were first proposed by Hart and Kohlberg 
[12], and applied to the model on the space ( )Kca  by Mas-Colell [18] (the model of the 
commodity differentiation. Bewley [8] also used this approach). 
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This time, one needs the Fatou’s lemma on the infinite dimensional 
spaces. We start with an economy with a bounded consumption set. This 
is a standard assumption. See Bewley [7]; Khan and Yannelis [17]; 
Noguchi [19, 20]; and Suzuki [28, 29]2. Usually the proof is carried out by 
approximating the large-infinite dimensional economy by large-finite 
dimensional sub-economies, a technique, which we will also utilize in this 
paper. In the course of the approximation, one is expected to apply the 
Fatou’s lemma. Balder and Sambucini [5]; Cornet and Mèdècin [9]; and 
Yannelis [30] have proved the infinite dimensional versions of the Fatou’s 
lemma. All of them, however, only ensure that the limit set of the 
integrals of finite dimensional allocations is contained in the integral of 
the closed convex hull of the limit set of the sequences. That is, 

( ( ) ) ( ( )) ,νν daLscodaLs kAkA ξ∫⊂ξ∫  and one obtains the limit allocation 

with ( ) ( ( )),aLscoa kξ∈ξ  where co  means the closed convex hull. As a 

consequence, one has to assume the convexity of the preferences. Indeed, 
Khan and Yannelis, and Bewley assumed that the preferences are 
convex. Noguchi assumed that a commodity vector does not belong to the 
convex hull of its preferred set3. These assumptions obviously weaken the 
impact of the Aumann’s classical result, which revealed the “convexfying 
effect” of large numbers of the economic agents. However, the convexity 
of preferences seems to be indispensable for proving the existence of 
equilibria for the “individual form” of the economy at the present stage of 
our knowledge. Indeed, we will apply a version of the Fatou’s lemma and 
impose the convexity of preferences also in the present paper.  

                                                      

2 It seems too demanding to allow the possibility of unbounded consumptions for each 
individual in such a “huge” market with infinitely many consumers and commodities. 
3 An advantage of the “coalitional form” of Hart and Kohlberg is that it can dispense with 
the Fatou’s lemma in the proof, and consequently, the convexity of preferences. Indeed, Mas-
Colell [18] and Suzuki [28, 29] proved equilibrium existence theorems without the convexity 
of preferences. 
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Basically, the paper is written in a fully self-contained manner. All 
mathematical concepts and results needed in the text will be found in the 
next section. In the last part of Section 2, we will present a Fatou’s 
lemma (Theorem 1) for correspondences (multifunctions). Since we define 
the resource feasibility by the Gel’fand integral, the lemma will be proved 
for the Gel’fand integral. Among the aforementioned papers, Yannelis 
[30] worked with the Bochner integrable correspondences, Cornet and 
Médécin [9] worked with the Gel’fand integrable mappings (functions). 
Finally, Balder and Sambucini [5] proved their theorem (lemma) for the 
Gel’fand integrable correspondences. Our result is far more modest than 
theirs, since we will assume that the ranges of the correspondences are 

contained in a fixed ∗weak  compact set. But our proof will be much 
simpler than theirs and elementary. It is based upon the Hahn-Banach 
separation theorem (Fact 4) and Khan’s extension of the Liapounoff’s 
convexity theorem (Fact 11), hence we can avoid the advanced techniques 
of the convex analysis, which were extensively used by Balder and 
Sambucini, and the result will be enough to our purpose, or the 
application to prove the equilibrium existence theorem. Indeed, it will 
provide a natural proof for the existence theorem, which is much simpler 
than those of Bewley [8] or Noguchi [20]. The market model will be 
presented in Section 3. Section 4 will be devoted to the proofs. 

2. An Infinite Dimensional Fatou’s Lemma 

As stated in Introduction, the commodity space of the economy in this 
paper is set to be 

{ ( ) },sup 1 +∞<ξξ=ξ= ≥
∞ t

t
tA  

the space of the bounded sequences with the supremum norm. It is well 

known that the space ∞A  is a Banach space with respect to the norm 
t

t ξ=ξ ≥1sup  for ∞∈ξ A  (Royden [22]). Let ( ).,0,0 …=0  For 
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( ) AR∈ξ=ξ t  or 0≥ξ∞ ,A  means that 0≥ξt  for all t and 0>ξ  means 

that 0≥ξ  and 00 ξ≠ξ .  means that 0>ξt  for all t. Finally, for 

( ) ,∞∈ξ=ξ At  we denote by 0ξ  if and only if there exists an 0>  

such that ≥ξt  for all t. 

It is a well known fact that the dual space of ∞A  is the space of 
bounded and finitely additive set functions on ,N  which is denoted by ba, 

( ) ( ) ( ) ( ){ }.0whenever,sup2: /=π+π=π+∞<π→π= ⊂ FEFEFEEba E ∩∪N
N R  

Then we can show that the space ba is a Banach with the norm 

( ) .,for0sup
1 











∈≠/=π=π ∑
=

NnjiEEE jii

n

i
∩  

Since the commodity vectors are represented by sequences, it is more 
natural to consider the price vectors also as sequences rather than the set 
functions. Therefore, the subspace ca of ba, 

( ) ( ) ( ) ,0whenever
1

1












≠/=π=π∈π= ∑
∞

=

∞
= jiEEEEbaca jin

n
nn ∩∪  

which is the space of the bounded and countably additive set functions on 
N  is more appropriate as the price space. Indeed, it is easy to see that 

the space ca is isometrically isomorphic to the space ,1A  the space of all 
summable sequences 

( ) ,
1

1













+∞<== ∑
∞

=

t

t

t pppA  

which is a separable Banach space with the norm .1
t

t p∑∞
=

=p  It is 

also well known that the norm dual of 1A  is ,∞A  or ( ) ,1 ∞∗ = AA  where ∗L  

is the space of the continuous linear functionals on a normed vector space 
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L.  Then the value of a commodity ( ) ∞∈ξ=ξ At  evaluated by a price 

vector ( ) 1A∈= tpp  is given by the natural “inner product” 

.1
tt

t p ξ=ξ ∑∞
=

p  

The set function ba∈π  is called purely finitely additive if 0=ρ  

whenever ca∈ρ  and .0 π≤ρ≤  The relation between the ba and ca is 

made clear by the next fundamental theorem. 

Fact 1  (Yosida-Hewitt [33]). If ba∈π  and ,0≥π  then there exist 

set functions 0≥πc  and 0≥πp  in ba such that cπ  is countably 

additive and pπ  is purely finitely additive and satisfy .pc π+π=π  This 

decomposition is unique. 

On the space ,∞A  we can consider the several topologies. One is of 

course the norm topology ,normτ  which was explained above. It is the 

strongest topology among the topologies which appear in this paper. 

The weakest topology in this paper is the product topology ,dτ  which 

is induced from the metric 

( )
( )

( ) ( ) .,for
12

,
1

∞
∞

=

∈ζ=ζξ=ξ
ζ−ξ+

ζ−ξ
=ζξ ∑ Att

ttt

tt

t
d  

The product topology is nothing but the topology of coordinate-wise 

convergence, or ( ) 0→ξ=ξ t  if and only if 0→ξt  for all .N∈t  

A net ( )αξ  on ∞A  is said to converge to 0 in the ∗weak  topology or 

( )1, AA∞σ -topology if and only if 0→ξαp  for each .1A∈p  The ∗weak  

topology is characterized by the weakest topology on ,∞A  which makes 

( ) .1AA =∗∞  Then it is stronger than the product topology, since the latter 

is characterized by 0→ξα  if and only if 0→ξαte  for all for each 
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( ) ,0,1,00 1A…… ∈=te  where 1 is at the t-th coordinate. A subbase of 

the neighbourhood system of ∞∈ A0  in the ∗weak  topology is the family 
of the sets U of the form 

{ } .,0, 1AA ∈><ξ∈ξ= ∞ pp U  

The strongest topology on ∞A  which makes ( ) 1AA =∗∞  is called the 

Mackey topology ( )., 1AA∞τ  It is characterized by saying that a net ( )αξ  

on ∞A  is said to converge to 0 in ( )1, AA∞τ -topology if and only if 

{ } 0sup →∈ξα Cpp  on every ( )∞σ AA ,1 -compact, convex, and circled 

subset C of ,1A  where a set C is circled if and only if CrC ⊂  for 

,11 ≤≤− r  and the topology ( )∞σ AA ,1  is defined analogously as 

( ),, 1AA∞σ  namely, that a net ( )αp  on 1A  is said to converge to 0 in the 

( )∞σ AA ,1 -topology if and only if 0→ξαp  for each .∞∈ξ A  The topology 

( )1, AA∞τ  is weaker than the norm topology. Hence, we have 

( ) ( ) .,, 11
normd τττ ⊂⊂σ⊂ ∞∞ AAAA  

Similarly, a net ( )απ  on ba is said to converge to 0 in the ∗weak  

topology or ( )∞σ A,ba -topology if and only if 0→ξπα  for each .∞∈ξ A   

In general, let L be a normed vector space and ∗L  its dual space. The 

dual norm on ∗L  is given by { }.1,sup ≤ξ∈ξξ= Lpp  A net ( )αξ  in 

L converges to L∈ξ  in the ( )∗σ LL, -topology or weak topology if and 

only if πξ→πξα  for every .∗∈π L  A net ( )απ  in ∗L  converges to 

∗∈π L  in the ( )LL ,∗σ -topology or ∗weak  topology if and only if 

πξ→ξπα  for every .L∈ξ  
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We can use the next useful proposition on bounded subsets of the 

space .∞A  

Fact 2 (Bewley [8], p.226). Let Z be a (norm) bounded subset of .∞A  

Then on the set Z, the Mackey topology ( )1, AA∞τ  coincides with the 

product topology .dτ  

Bounded subsets of ∞A  are ( )1, AA∞σ -weakly compact, namely, that 

the ∗weak -closure of the sets are ∗weak -compact by the Banach-
Alaoglu’s theorem. 

Fact 3 (Rudin [23], pp.68-70). Let L be a Banach space. The unit ball 

of { }1|, ≤π∈π= ∗∗ LBL  is compact in the ( )LL ,∗σ -topology. 

Moreover, if L is a separable Banach space, then bounded subsets of ∗L  

is compact and metrizable in the ∗weak  topology. 

These are examples of the locally convex topological vector space. It is 
defined as a vector space endowed with the compatible topology (vector 
space operations are continuous with respect to this topology), whose 
every neighbourhood of 0 includes a convex neighbourhood of 0. The dual 

space of a topological vector space L is also denoted by .∗L  Let A be a 
subset of a locally convex topological vector space. We denote by ( )Aco  

the convex hull of A. ( ) ( )AcoAco ≡  is its closure. The famous 

Minkowski’s separation hyper-plane theorem is extended to locally 
convex topological vector spaces. 

Fact 4 (Aliprantis and Border [1], p.147). For disjoint nonempty 
convex subsets A and B of a locally convex L, if one is compact and the 

other closed, then there is a nonzero continuous functional ∗∈ Lp  such 
that for some 0,0 ≤> qx  for all A∈x  and ≥qy  for all .B∈y  

Let X be a complete and separable metric space. Let nF  be a 

sequence of subsets of X. The topological limes superior ( )nFLs  is 

defined by 
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( )nFLs∈ξ  if and only if there exists a sub-sequence ( )knF  with 

( ) ( )knkn F∈ξ  for all k and ( ) ( ).∞→ξ→ξ kkn  

Let X be a complete separable metric (or normed) space. The Borel   
σ -algebra of X, which is defined as the σ -algebra generated by open 
subsets of X is denoted by ( ).XB  For a separable Banach space L, let 

{ }.| kLBk ≤π∈π= ∗  Then kB  are compact and metrizable in the 
∗weak  topology by Fact 3. Hence kk BL ∞

=
∗ = 1∪  is a Suslin space. 

Therefore, we have (Balder and Sambucini [5], p.384). 

Fact 5. The Borel σ -algebra ( )∗LB  is the same for the ∗weak  

topology and the norm topology for a separable Banach space L. 

Let ( )ν,, AA  be a complete and finite measure space. Aumann [3] 

proved 

Fact 6. Let XA →φ :  be a nonempty valued correspondence with a 

measurable graph, or ( ) ( ){ } ( )., XaXAa BA ×∈φ∈×∈ xx  Then there 

exists a measurable function XAf →:  such that ( ) ( )aaf φ∈  a.e. and 

the next theorem is known as Kuratowski and Ryll-Nardzewski 
measurable selection theorem. 

Fact 7 (Yannelis [31], p.40). Let XA →φ :  be a closed non-      

empty valued correspondence, which is lower measurable, or 
( ){ } A∈/≠φ∈ 0UaAa ∩  for every open subset U of X. Then, there 

exists a measurable function XAf →:  such that ( ) ( )aaf φ∈  a.e. 

Consider a sequence of correspondences .: XAn →φ  For each 

,Aa ∈  if ( ( )) ,0/≠φ aLs n  we can define a map ( ( )) ,: XALs n →⋅φ  

( ( )).aLsa nφ6  Then we have 

Fact 8 (Noguchi [19], p.278). Let XAn →φ :  be a sequence of 

nonempty valued lower measurable correspondences. Then the map 
( ( ))⋅φnLs  has a measurable graph. 
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A map ∞→ AAf :  is said to be ∗weak -measurable if for each 

( )afpp ,1A∈  is measurable. A map ∞→ AAf :  is weakly measurable, 

if for each ( )afba π∈π ,  is measurable. A ∗weak -(weakly) measurable map 

( )af  is said to be Gel’fand (Pettis) integrable, if there exists an element 
∞∈ξ A  such that for each ( ) ( ) ( ( ) ).,1 νν dafdafba π∫=πξ∫=ξ∈π∈ ppp A  

The vector ξ  is denoted by ( ) νdaf∫  and called Gel’fand (Pettis) integral 

of f. It is obvious that if a map f is Pettis integrable, it is Gel’fand 
integrable and the both integrals coincide. 

Fact 9 (Diestel and Uhl [11], p.53-54). If ∞→ AAf :  is ∗weak -
(weakly) measurable and ( ) ( )( )afaf πp  is integrable function for all 

( ),1 ba∈π∈ Ap  then f is Gel’fand (Pettis) integrable. 

Fact 10. Let { }nf  be a sequence of Gel’fand integrable functions from 

A to ,∞A  which converges a.e. to f in the ∗weak  topology. Then, it follows 

that ( ) ( ) νν dafdaf AnA ∫→∫  in the ∗weak  topology. 

Proof. Let .1A∈p  Then we have 

( ) ( ) ( ) ( ) ,νννν dafdafdafdaf
AA

n
A

n
A ∫∫∫∫ =→= pppp  

hence ( ) ( ) νν dafdaf AnA ∫→∫  in the ( )1, AA∞σ -topology.   

The next theorem is due to Ali Khan [15], which is an infinite 
dimensional generalization of the Liapounoff ’s theorem. 

Fact 11 (Yannelis [30], p.30). Let ( )ν,, AA  be a complete and finite 

measure space, and ∗L  be the dual space of a separable Banach space L. 

Let ∗→φ LA:  be a correspondence with a ∗weak -measurable graph, or 

( ) ( ){ } ( ),|, ∗×∈φ∈×∈ LaXAa BAxx  where ( )∗LB  is the family of 

Borel measurable subsets of ∗L  in the ∗weak  topology. Assume that 
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( )aφ  is ∗weak -closed and bounded for all .Aa ∈  Then, it follows that 

( ) ( )( ) ,allfor A∈φ=φ ∫∫ Bdacoda
BB

νν  

where the closure is taken with respect to the ∗weak  topology. Moreover, 

( )( ) νdaco
B

φ∫  is convex and compact in the ∗weak  topology for every 

.A∈B  

The next fact is well known for mathematical economics as Fatou’s 
lemma for finite dimensional spaces (the last equality is known as 
Liapounoff ’s theorem). 

Fact 12 (Hildenbrand [13], Theorem 6, p.68). Let ( ) N∈φ n  be a 

sequence of measurable correspondences of a measure space ( )ν,, AA  to 
A
+R  such that there exists a sequence ( )agn  of functions A to A

+R  

satisfying (i) ( ) ( )aga nn ≤φ  a.e. on A, and (ii) the sequence ( )agn  is 

uniformly integrable and the set { ( ) }…,2,1=nagn  is bounded a.e. on 

A. Then ( ( ) ) ( ( ( )) ( ( ( ))) .ννν daLscodaLsdaLs
AnAnA

φ=φ⊂φ ∫∫∫  

We need the next theorem which is an infinite dimensional version of 
Fact 12. For the corresponding theorem for Bochner integrals, see 
Yannelis ([30], Theorem 6.5, p.23). 

Theorem 1. Let ∗L  be the dual space of a separable Banach space L. 

Let N∈φn  be a sequence of ∗weak -closed valued and lower measurable 

correspondences of a complete and finite measure space ( )ν,, AA  to a 

(norm) bounded subset X of .∗L  Then 

( ) ( ( )) ,νν daLsdaLs n
A

n
A

φ⊂






 φ ∫∫  

where the closure is taken with respect to the ∗weak  topology. 
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The proof of Theorem 1 will be given in Section 4. 

3. A General Equilibrium Model 

Let 0>β  be a given positive number. We will assume that the 

consumption set X of each consumer is the set of nonnegative vectors, 
whose coordinates are bounded by ,β  

{ ( ) }.1for0 ≥β≤ξ≤∈ξ=ξ= ∞ tX tt A  

X is the set of all admissible consumption vectors. Then of course 
0>β  is intended to be a very large number. From Fact 2, we have 

( ) ( )11 ,, AAAA ∞∞ =σ= ττd  on the set X. Since X is compact in dτ  (hence 

( )1, AA∞σ  and ( ))1, AA∞τ  topology, it is complete and separable metric 

space. 

As usual, a preference   is a complete, transitive, and reflexive 
binary relation on X. We denote ( ) ∈ζξ,  by .ζξ   The interpretation is 

that the consumption vector ξ  is at least as desired as ζξζ ≺.  means 

that ( ) ., ∈/ζξ  Let XX×⊂ 2P  be the collection of allowed preference 

relations. 

Each consumer has a vector ,∞∈ω A  which is called an initial 
endowment vector owned by the consumer before trading in the market. 
We denote the set of all endowment vectors by Ω  and assume that it is of 
the form 

{ ( ) },1for0 ≥γ≤ω≤∈ω=ω=Ω ∞ ttt A  

for some .0>γ  We then assume that .β<γ  The set Ω  is also a compact 

metric space by the same reason as the space X. 

Let ( )ν,, AA  be a probability space of consumers, which is assumed 

to be complete and atomless. Each element Aa ∈  stands for the “name” 
of the consumers. In other words, a consumer is identified by an element 
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of A. For each ,Aa ∈  we have a map which assigns a his/her preference 
P∈a  and is measurable in the sense that 

{( ) } ( ) ( ),,, XXXXAa a BBA ××∈ζξ××∈ζξ   

where ( )XB  is the set of Borel subsets of X in the ∗weak  topology. 

An endowment assignment map ω  is a Borel measurable map from A 
to ( )( ) ( ) ,,, Ω∈ωΩΩ aa 6B  where ( )ΩB  is the Borel σ -algebra with 

respect to the ∗weak  topology. Then it is ∗weak -measurable, or for every 

( ) R→ω∈ Aa :,1 pp A  is a measurable function. Note that by Fact 9 in 

Section 2 combined with the assumption for ,Ω  the map ω  is Gel’fand 

integrable. Since the Borel σ -algebra with respect to the ∗weak  topology 
is the same as that in the norm topology (Fact 5), then all σ -algebras 

with respect to the ,weak∗  weak, and the norm topology coincide, since 

( ) ( ) .,, 1
normba τ⊂σ⊂σ ∞∞ AAA  Therefore, a map ω  is also weakly 

measurable, hence it is Pettis integrable by Fact 9. 

The definition of the economy follows Aumann [2, 4] and Hildenbrand 
[13]. 

Definition 1. An economy E  is a mapping Ω×→ PE A:  defined 
by ( ( ))., aa a ω6  

The assumptions for the preferences are: 

Assumption (PR) 

(i) P∈  is complete, transitive, and reflexive, which is closed in 

XX ×  in the ∗weak  topology. 

(ii) (Monotonicity). For each X∈ξ  and X∈ζ  such that ,ζ<ξ  
.ζξ ≺  

(iii) (Convexity). For ,P∈  the set { }ζξ∈ξ X  is convex for all 

.X∈ζ  
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An integrable map XA →ξ :  is called an allocation. The allocation 

ξ  is said to be feasible if ( ) ( ) .νν dada
AA
ω≤ξ ∫∫  It is said to be exactly 

feasible, if ( ) ( ) .νν dada
AA
ω=ξ ∫∫  Note that the Gel’fand integral 

( ) νda
A
ξ∫  also exists if ξ  is ∗weak -measurable by virtue of Fact 9. 

The next equilibrium concept is due to Debreu [10]. 

Definition 2. A pair ( )ξ,p  of a price vector 1
+∈ Ap  with 0≠p  and 

an allocation XA →ξ :  is called a quasi-competitive equilibrium of the 

economy ,µ  if the following conditions hold: 

(Q-1) ( ) ( )aa ω≤ξ pp  and ( ) ζξ aa   whenever ( )aω<ζ pp  a.e.. 

(Q-2) ( ) ( ) .νν dada
AA
ω≤ξ ∫∫  

The condition (Q-1) says that the quasi-demand condition is met, or 
the vector ξ  is maximal among the vectors, which are strictly cheaper 

than the endowment vectors. The condition (Q-2) says that the allocation 
ξ  is a feasible one. The quasi-equilibrium is slightly weaker than the 

competitive equilibrium, by which the exact equilibrium concept is 
realized. 

Definition 3. A pair ( )ξ,p  of a price vector 1
+∈ Ap  with 0≠p  and 

an allocation XA →ξ :  is called a competitive equilibrium of the 

economy ,E  if the following conditions hold: 

(E-1) ( ) ( )aa ω≤ξ pp  and ( ) ζξ aa   whenever ( )aω≤ζ pp  a.e.. 

(E-2) ( ) ( ) .νν dada
AA
ω=ξ ∫∫  

The condition (E-1) says that almost all consumers maximize their 
utilities under their budget constraints. The condition (E-2) says that the 
total equilibrium allocation is exactly equal to the total endowment 
(exactly feasible). 
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The following assumption on the total endowment, which means that 
every commodity is available in the market is standard. 

Assumption (TP) (Positive total endowment). ( ) .0νda
A
ω∫  

In order to obtain a competitive equilibrium, however, we need a 
stronger assumption on the individual initial endowment. 

Assumption (IP) (Individually positive endowments). ( ) 0aω  a.e.. 

The main result of this paper now reads 

Theorem 2. Let E  be an economy which satisfies the Assumptions 
(PR) and (TP). Then there exists a quasi-competitive equililbrium ( )ξ,p  

for .E  

As a corollary of Theorem 2, we obtain 

Theorem 3. Let E  be an economy which satisfies the Assumptions 
(PR) and (IP). Then there exists a competitive equilibrium ( )ξ,p  for .E  

4. Proofs of Theorems 

Proof of Theorem 1. By assumption, there exists an 0>α  with 
α≤x  for all ,X∈x  and we can assume that ( ) α≤φ an  for all Aa ∈  

and for all .,2,1 …=n  Then by Fact 3, the set X is a compact metric 

space, hence complete and separable. Take any .L∈p  We claim that for 
any sequence nF  of nonempty subsets of ( ) ( )., nn FLsFLsX pp =  Indeed, 

suppose ( ).nFLsppx ∈  Then, there exists a sub-sequence { }qnx  of nx  

such that qq nn F∈x  for all q, and ,xx →qn  hence ,pxpx →qn  which 

implies that ( ).nFLs ppx ∈  Conversely, suppose ( ).nFLsw p∈  Then 

there exists a sub-sequence qnx  such that qq nn F∈x  for all q and 

.wqn →px  Since X  is a compact metric space, we can take a converging 

sub-sequence of qnx  still denoted by qnx  with xx →qn  in the ∗weak  

topology, or ( ).nFLs∈x  Since ,wqn =→ pxpx  we have ( ).nFLsw p∈  
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It follows from this and Fact 12 that 

( ) ( ) ( ( )) ννν daLsdaLsdaLs n
A

n
A

n
A

φ⊂






 φ=






 φ ∫∫∫ ppp  

 ( ( )) ( ( )) νν daLsdaLs n
A

n
A

φ⊂φ= ∫∫ pp  

 ( ( )) ,νdaLsco n
A

φ= ∫p  

where in the last equality, we applied Fact 11. Note that ( ) 0ν /≠φ∫ danA
 

for each n by Fact 7 and ( ( )) 0ν /≠φ∫ daLs nA
 by Fact 8. 

We now claim that ( ( ) ) ( ( )) .νν daLsdaLs nAnA
φ⊂φ ∫∫  Suppose not. 

Then there exists a vector ( ( ) )νdaLs nA
φ∈ ∫x  with ( ( )) .νdaLs nA

φ∈/ ∫x  

Since ( ( )) ( ( )) νν daLscodaLs nAnA
φ=φ ∫∫  is compact and convex by Fact 

11, it follows from Fact 4 that we can take a vector L∈q  and 0>  

such that 0≤qx  and >qy  for all ( ( )) .νdaLs
A

φ∈ ∫y  A contradiction.   

Proof of Theorem 2. Let Ω×→ PE A:  be the economy. For each 

,N∈n  let nK  be the canonical projection of ∞A  to { ( )tnn K ξ=ξ=,R  

( )}.,0,0,,,, 21 ……A nξξξ=ξ∈ ∞  Naturally, we can identify nK  with 

,nR  or .nnK R≈  We define 

( ) ,,2,, nnXXnnnnnn KXXKXX
nn

∩∩∩∩ Ω=Ω=×== ×PP  

and for every ( ) ,,,,,, 121 Ω∈ωωωω=ω + …… nn  we denote 

( ) ,,0,0,,,, 21 nn
n Ω∈ωωω=ω ……  the canonical projection of .ω  They 

induce finite dimensional economies nnn A Ω×→ PE :  defined by 

( ) ( ( )) .,2,1,, …=ω= naa n
n
a

n E  We have 
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Lemma 1. ( ) ( )aan EE →  a.e. 

Proof. We show that XXXX nn ×→×  in the topology of closed 

convergence .cτ  It is clear that ( ) ( ) .XXXXLsXXLi nnnn ×⊂×⊂×  

Therefore, it suffices to show that ( ).nn XXLiXX ×⊂×  Let 

( ) (( ) ( )) ,,, XXtt ×∈ζξ=ζξ  and set ( )…… 0,0,1 n
n ξξ=ξ  and 

similarly nζ  for .ζ  Then ( ) nn
nn XX ×∈ζξ ,  for all n and ( ) →ζξ nn ,  

( )., ζξ  Hence ( ) ( )., nn XXLi ×∈ζξ  Then it follows that ( ×= nn X∩  

) .→nX  

Obviously, one obtains ω→ωn  in the ( )1, AA∞σ -topology. 

Consequently, we have ( ) ( )aan EE →  a.e. on A.  

Lemma 2. For each n, there exists a quasi-competitive equilibrium for 

the economy ,nE  or a price-allocation pair ( ( )),, ann ξπ  which satisfies 

(Q-1n) ( ) ( )aann ω≤ξπ p  and ( ) ζξ an a   whenever ( )annn ωπ≤ζπ  and 

( ) 0>ωπ ann  a.e.. 

(Q-2n) ( ) ( ) ν.ν dada n
A

n
A

ω≤ξ ∫∫  

Proof. See Appendix in Suzuki [29] or Khan-Yamazaki [16], 
Proposition 2.  

Since ( ) ( )aan ω→ω  a.e., we have ( ) ( ) νν dada
AnA
ω→ω ∫∫  by Fact 

10. Without loss of generality, we can assume that 11 ==π ∑ =
t
n

n
tn p1  for 

all n, where ( )t
nn p=π  and ( ).,1,1 …=1  Here, we have identified 

n
n +∈π R  with a vector in ,1

+A  which is also denoted by nπ  as 

( ).0,0, …nn π=π  Since the set { }1=π=π∈π=∆ + 1ba  is ∗weak -

compact by the Alaoglu’s theorem (Fact 3), we have a price vector 
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+∈π ba  with 1=π1  and a subnet ( ( ) )απn  such that ( ) π→π αn  in the 

( )∞σ A,ba -topology. Since ( ) ( ) ( ) νν dada
AnA
ω→ω ∫∫ α  and Ω  is a 

compact metric space, we can extract from { ( )}αωn  a sequence { ( )}kn αω  

denoted by { }kω  with ( ) ( ) ν.ν dada
AkA
ω→ω ∫∫  Let kξ  be the 

corresponding sequence extracted from ( ).αξn  Note that ( )knk αξ≡ξ  is a 

sub-sequence of .nξ  By Theorem 1, we have a Gel’fand integrable 

function XA →ξ :  such that 

( ) ( ( )) ( ( )( ))aLscoaLscoa nk αξ⊂ξ∈ξ a.e., 

and 

( ) ( ) ν.ν dada
AA
ω≤ξ ∫∫  

We can show that ( ( )) ( ( )( ))aLscoaLsco nk αξ⊂ξ  as follows. Let 

( ( ))aLs kξ∈ξ  and take a neighbourhood U of ξ  and ( ) .00 nn ≡α  Since 

( )kn αξ  is a sub-sequence of ,nξ  we can take an ( )1αn  from ( )kn α  with 

( ) .011 nnn >≡α  Since ( ( )),aLs kξ∈ξ  we have for some ( ) 122 nnn >≡α  

that ( ) ,2 Un ∈ξ α  hence ( ( )) ( ( )( )).aLsaLs nk αξ⊂ξ  It follows from this 

that ( ( )) ( ( )( )).aLscoaLsco nk αξ⊂ξ  

By the above inequality, we see that the condition (Q-2) is met. Let 
{ ( ) }.0>πω∈= aAaP  We now prove that 

Lemma 3. ( ) ζξ aa ≺  implies that ( ) πζ<πω a  a.e. on P. 

Proof. If the lemma was false, there exists ( ) ( ( )) Xaa t ∈ζ=ζ  such 

that ( ) ( )aa πω≤πζ  and ( ) ( )aa a ζξ ≺  on a subset of P with ν -positive 

measure. Since the preferences are continuous, we can assume without 
loss of generality that ( ) ( )aa πω<πζ  and ( ) ( ).aa a ζξ ≺  Let ( ) =ζ an  
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( ( ) ( ) )…… 0,0,1 aa nζζ  be the projection of ( )aζ  to .nX  Since 

( ) ( )aan ζ→ζ  in the ( )1, AA∞σ  topology, we have for sufficiently large N 

that ( ) ( ) ( )aaaN πω<πζ≤πζ  and ( ) ( ),aa Na ζξ ≺  since 0≥π  and 

( ) ( ).aaN ζ≤ζ  We claim that for every ,α  there exists an α≥α0  such 

that ( )( ) ( )aa Nan ζξ α ≺0  a.e. If not, we have for some 

( )( ) ( )aa Nan ζξα α ,0  for all .0α≥α  Since ( ) ( ( )( ))aLscoa n αξ∈ξ  a.e., for 

each neighbourhood ( )aU  of ( ),aξ  there exists a vector ( )ax ii
m
i ξ∑ =1  with 

0≥ix  and ( ) ( ( )( )) ,1,,11 miaLsax nii
m
i …=ξ∈ξ= α=∑  a.e.. Consequently, 

we can take a vector ( ) ( )aUaco ∈ξ  of the form ( ) ( )( )axa ini
m
ico α=

ξ=ξ ∑ 1  

a.e.. Without loss of generality, we can assume that ,1,0 mii …=α≥α  

hence ( )( ) ( ) ,1, miaa Nan i …=ζξ α   a.e.. Then one obtains from 

Assumption (PR)(iii) that ( ) ( ).aa Naco ζξ   Since ( )acoξ  is arbitrarily 

close to ( ),aξ  we have ( ) ( )aa Naζξ   a.e., a contradiction. 

Then it follows from ( ) π→π αn  that for some 0α  with ( ) ,00 Nnn ≥≡α  

( ) ( ) ( ),0 0000 aaa nnnNn ωπ=ωπ<ζπ≤  and ( ) ( ),0 aa Nan ζξ ≺  or 

( ) ( ).0
0 aa N

n
an ζξ ≺  This contradicts the fact that ( ( ))ann 00 , ξπ  is a quasi-

equilibrium for .0nE   

Let pc π+π=π  be the Yosida-Hewitt decomposition and denote 

.p=πc  Suppose that ( ) 0>πω a  and ( ) .ζξ aa ≺  Then we can assume 

that ( ) naa ζξ ≺  for n sufficiently large, where as usual nζ  is the 

projection of ζ  to .nR  Hence, it follows from Lemma 3 that ( )an πω>πζ  

for n sufficiently large. Since pπ  is purely finitely additive, 

{ }( ) 01 =π np …  for each n. It follows from this and 0≥πc  that 

( ) ,ζ=ζπ≤ζπ=ζπ+π=πζ pcncnpcn  
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since .ζ≤ζn  On the other hand, 0≥πp  and ( ) 0≥ω a  imply that 

( ) ( ) ( ) ( ) ( ),aaaa cpc ω=ωπ≥ωπ+π=πω p  and consequently, we have 

( ).aω>ζ pp  

Summing up, we have verified that 

Lemma 4. ( ) ζξ aa ≺  implies that ( ) ζ<ω pp a  a.e. on P. 

Since the preferences are locally non-satiated, there exists X∈ζ  

arbitrarily close to ( )aξ  such that ( ) ,ζξ aa ≺  therefore, we have 

( ) ( ) .allalmostfor Paaa ∈ξ≤ω pp  

On the other hand, for Aa ∈  with ( ) ,0=πω a  one obtains that 

( ) ( ) ( ),00 aaa ξ≤=πω≤ω≤ pp  since 0≥p  and ( ) ( ) ., 0≥ξω aa  

It follows from ( ) ( ) νν
ΑΑ

dada ω≤ξ ∫∫  that  

( ) ( ) ( ) ( ) ν.ννν dadadada ω=ω≤ξ=ξ ∫∫∫∫ pppp
ΑΑΑΑ

 

Therefore ( ) ( )aa ω=ξ pp  a.e. on A. It follows from this and Lemma 4 

that the condition (Q-1) is met, since it holds trivially for .\ PAa ∈  

Therefore, ( )ξ,p  is a quasi-competitive equilibrium for .E  This proves 

Theorem 2.  

Note that the quasi-competitive equilibrium is not very interesting, if 

( ) .0=Pν  This situation is excluded, since ( ) ( ) ν.ν dada
AA
πω=ωπ ∫∫  

Although the elements of the space ba generally do not commute with the 
Gel’fand integral. With the Pettis integral, however, they do. Then by 
Assumption (TP) and 1=π1  we obtain that ( ) ({ ( ) >πω∈= aAaP νν  

}) 00 >  as desired. 

Proof of Theorem 3. We now assume Assumption (IP) instead of 
(TP). The condition (E-1) follows immediately from Lemma 4 and  

Lemma 5. ( ) .1=Pν  
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Proof. Obvious from Assumption (IP) and .1=π1   

By Lemma 5, we have obtained that 

( ) ( ) .ona.e.thatimplies Aaa a ζ<ωζξ pp≺  

This shows that the condition (E-1) is met. Finally, since 

( ) ≤ξ∫ νdat
A

 ( ) β<γ≤ω∫ νdat
A

 for each t, there exists a positive 

amount of consumers with ( ) .β<ξ at  Then by the monotonicity (PR)(ii), 

one obtains that 0>tp  for all t, hence ( ) ( ) ,νν dada
AA
ω=ξ ∫∫  or the 

condition (E-2) is met. This completes the proof of the Theorem 3.  
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